Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Sci Rep ; 14(1): 9250, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649415

RESUMEN

Canine distemper virus (CDV) is a highly contagious virus that affects domestic and wild animals, causing severe illness with high mortality rates. Rapid monitoring and sequencing can provide valuable information about circulating CDV strains, which may foster effective vaccination strategies and the successful integration of these into conservation programs. During two site visits in Bangladesh in 2023, we tested a mobile, deployable genomic surveillance setup to explore the genetic diversity and phylogenetic patterns of locally circulating CDV strains. We collected and analysed 355 oral swab samples from stray dogs in Rajshahi and Chattogram cities, Bangladesh. CDV-specific real-time RT-PCR was performed to screen the samples. Out of the 355 samples, 7.4% (10/135) from Rajshahi city and 0.9% (2/220) from Chattogram city tested positive for CDV. We applied a real-time RT-PCR assay and a pan-genotype CDV-specific amplicon-based Nanopore sequencing technology to obtain the near-completes. Five near-complete genome sequences were generated, with phylogenetic relation to the India-1/Asia-5 lineage previously identified in India. This is the first study to provide genomic data on CDV in Bangladesh and the first demonstration of a mobile laboratory setup as a powerful tool in rapid genomic surveillance and risk assessment for CDV in low resource regions.


Asunto(s)
Virus del Moquillo Canino , Moquillo , Secuenciación de Nanoporos , Filogenia , Virus del Moquillo Canino/genética , Virus del Moquillo Canino/aislamiento & purificación , Virus del Moquillo Canino/clasificación , Bangladesh/epidemiología , Animales , Perros , Moquillo/virología , Moquillo/epidemiología , Secuenciación de Nanoporos/métodos , Genoma Viral , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Genotipo , ARN Viral/genética
2.
Parasit Vectors ; 17(1): 140, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38500161

RESUMEN

BACKGROUND: Different mosquito control strategies have been implemented to mitigate or prevent mosquito-related public health situations. Modern mosquito control largely relies on multiple approaches, including targeted, specific treatments. Given this, it is becoming increasingly important to supplement these activities with rapid and mobile diagnostic capacities for mosquito-borne diseases. We aimed to create and test the applicability of a rapid diagnostic system for West Nile virus that can be used under field conditions. METHODS: In this pilot study, various types of adult mosquito traps were applied within the regular mosquito monitoring activity framework for mosquito control. Then, the captured specimens were used for the detection of West Nile virus RNA under field conditions with a portable qRT-PCR approach within 3-4 h. Then, positive samples were subjected to confirmatory RT-PCR or NGS sequencing in the laboratory to obtain genome information of the virus. We implemented phylogenetic analysis to characterize circulating strains. RESULTS: A total of 356 mosquito individuals representing 7 species were processed in 54 pools, each containing up to 20 individuals. These pools were tested for the presence of West Nile virus, and two pools tested positive, containing specimens from the Culex pipiens and Anopheles atroparvus mosquito species. As a result of subsequent sequencing, we present the complete genome of West Nile virus and Bagaza virus. CONCLUSIONS: The rapid identification of infected mosquitoes is the most important component of quick response adulticide or larvicide treatments to prevent human cases. The conceptual framework of real-time surveillance can be optimized for other pathogens and situations not only in relation to West Nile virus. We present an early warning system for mosquito-borne diseases and demonstrate its application to aid rapid-response mosquito control actions.


Asunto(s)
Culex , Culicidae , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Humanos , Virus del Nilo Occidental/genética , Fiebre del Nilo Occidental/diagnóstico , Fiebre del Nilo Occidental/prevención & control , Fiebre del Nilo Occidental/epidemiología , Filogenia , Proyectos Piloto , Control de Mosquitos , Mosquitos Vectores
3.
Vet Res Commun ; 48(1): 309-315, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37688754

RESUMEN

Polyomaviruses are widely distributed viruses of birds that may induce developmental deformities and internal organ disorders primarily in nestlings. In this study, polyomavirus sequence was detected in kidney and liver samples of a common kestrel (Falco tinnunculus) that succumbed at a rescue station in Hungary. The amplified 5025 nucleotide (nt) long genome contained the early (large and small T antigen, LTA and STA) and late (viral proteins, VP1, VP2, VP3) open reading frames (ORFs) typical for polyomaviruses. One of the additional putative ORFs (named VP4) showed identical localization with the VP4 and ORF-X of gammapolyomaviruses, but putative splicing sites could not be found in its sequence. Interestingly, the predicted 123 amino acid (aa) long protein sequence showed the highest similarity with human papillomavirus E4 early proteins in respect of the aa distribution and motif arrangement implying similar functions. The LTA of the kestrel polyomavirus shared <59.2% nt and aa pairwise identity with the LTA sequence of other polyomaviruses and formed a separated branch in the phylogenetic tree among gammapolyomaviruses. Accordingly, the kestrel polyomavirus may be the first member of a novel species within the Gammapolyomavirus genus, tentatively named Gammapolyomavirus faltin.


Asunto(s)
Poliomavirus , Humanos , Animales , Poliomavirus/genética , Virus del Papiloma Humano , Filogenia , Genoma Viral/genética , Genómica
4.
Sci Rep ; 13(1): 11310, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443182

RESUMEN

Lloviu cuevavirus (LLOV) was the first identified member of Filoviridae family outside the Ebola and Marburgvirus genera. A massive die-off of Schreibers's bats (Miniopterus schreibersii) in the Iberian Peninsula in 2002 led to its initial discovery. Recent studies with recombinant and wild-type LLOV isolates confirmed the zoonotic nature of the virus in vitro. We examined bat samples from Italy for the presence of LLOV in an area outside of the currently known distribution range of the virus. We detected one positive sample from 2020, sequenced the complete coding region of the viral genome and established an infectious isolate of the virus. In addition, we performed the first comprehensive evolutionary analysis of the virus, using the Spanish, Hungarian and the Italian sequences. The most important achievement of this study is the establishment of an additional infectious LLOV isolate from a bat sample using the SuBK12-08 cells, demonstrating that this cell line is highly susceptible to LLOV infection and confirming the previous observation that these bats are effective hosts of the virus in nature. This result further strengthens the role of bats as the natural hosts for zoonotic filoviruses.


Asunto(s)
Quirópteros , Filoviridae , Marburgvirus , Animales , Filoviridae/genética , Línea Celular , Italia , Filogenia
5.
Vet Q ; 43(1): 1-18, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37431709

RESUMEN

Certain pathogens, due to their adverse effects on the immune reaction, aggravate the course of concomitant heterologous infections. Here we summarize mechanisms by which circoviruses, including the most studied porcine circovirus 2, and other mammalian and avian circoviruses, trigger their own replication and confound the hosts' immune response. At different stages of infection, from latent state to disease induction, these viruses markedly influence the cellular signaling pathways. Circoviruses have been found to interfere with interferon and proinflammatory cytokine producing and responsive pathways. Apoptotic processes, altered cellular transport and constraint of the mitotic phase all support the viral replication. The cytokine imbalance and lymphocyte depletion, thus the impaired immunity, favors invasion of super- or co-infecting agents, which in concert with circoviruses induce illnesses with increased severity. The information summarized in this review point out the diversity of host and viral factors involved in the mechanisms of disease progression during circovirus infections.


Asunto(s)
Infecciones por Circoviridae , Circovirus , Enfermedades de los Porcinos , Porcinos , Animales , Infecciones por Circoviridae/veterinaria , Replicación Viral , Terapia de Inmunosupresión/veterinaria , Citocinas/metabolismo , Mamíferos
6.
BMC Complement Med Ther ; 23(1): 138, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127611

RESUMEN

BACKGROUND: Parallel to the growth of the oral healthcare market, there is a constantly increasing demand for natural products as well. Many customers prefer products that contain fewer toxic agents, therefore providing an environmentally friendly solution with the benefit of smaller risk to the user. Medieval and early modern medicinal knowledge might be useful when looking for natural, herbal-based components to develop modern products. Along with these considerations we created, tested, and compared an entirely natural mouthwash, named Herba Dei. METHODS: The manufacturing procedure was standardized, and the created tincture was evaluated by GC/MS analysis for active compounds, experimentally tested in cell-based cytotoxicity, salivary protein integrity, cell-free antioxidant activity, anti-bacterial and anti-viral assays, and compared with three market-leading mouthwashes. RESULTS: Our tincture did not show significant damage in the cytotoxicity assays to keratinocyte and Vero E6 cells and did not disrupt the low molecular weight salivary proteins. Its radical scavenging capacity surpassed that of two tested, partly natural, and synthetic mouthwashes, while its antibacterial activity was comparable to the tested products, or higher in the bacterial aerobic respiratory assay. The active compounds responsible for the effects include naturally occurring phenylpropanoids, terpenes, and terpenoids. Our mouthwash proved to be effective in vitro in lowering the copy number of SARS-CoV-2 in circumstances mimicking the salivary environment. CONCLUSIONS: The developed product might be a useful tool to impede the transmission and spread of SARS-CoV-2 in interpersonal contact and aerosol-generating conditions. Our mouthwash can help reduce the oral bacterial flora and has an antioxidant activity that facilitates wound healing and prevents adverse effects of smoke in the oral cavity.


Asunto(s)
COVID-19 , Antisépticos Bucales , Humanos , Antisépticos Bucales/efectos adversos , SARS-CoV-2 , Antioxidantes , Boca/microbiología , Terpenos
7.
Sci Data ; 10(1): 262, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160911

RESUMEN

The recent human Monkeypox outbreak underlined the importance of studying basic biology of orthopoxviruses. However, the transcriptome of its causative agent has not been investigated before neither with short-, nor with long-read sequencing approaches. This Oxford Nanopore long-read RNA-Sequencing dataset fills this gap. It will enable the in-depth characterization of the transcriptomic architecture of the monkeypox virus, and may even make possible to annotate novel host transcripts. Moreover, our direct cDNA and native RNA sequencing reads will allow the estimation of gene expression changes of both the virus and the host cells during the infection. Overall, our study will lead to a deeper understanding of the alterations caused by the viral infection on a transcriptome level.


Asunto(s)
Secuenciación de Nanoporos , Humanos , ADN Complementario , Perfilación de la Expresión Génica , Transcriptoma
8.
Biol Futur ; 74(1-2): 81-89, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37199870

RESUMEN

Genomic epidemiology is now a core component in investigating the spread of a disease during an outbreak and for future preparedness to tackle emerging zoonoses. During the last decades, several viral diseases arose and emphasized the importance of molecular epidemiology in tracking the dispersal route, supporting proper mitigation measures, and appropriate vaccine development. In this perspective article, we summarized what has been done so far in the genomic epidemiology field and what should be considered in the future. We traced back the methods and protocols employed over time for zoonotic disease response. Either to small outbreaks such as the severe acute respiratory syndrome (SARS) outbreak identified first in 2002 in Guangdong, China, or to a global pandemic like the one that we are experiencing now since 2019 when the severe acute respiratory syndrome 2 (SARS-CoV-2) virus emerged in Wuhan, China, following several pneumonia cases, and subsequently spread worldwide. We explored both the benefits and shortages encountered when relying on genomic epidemiology, and we clearly present the disadvantages of inequity in accessing these tools around the world, especially in countries with less developed economies. For effectively addressing future pandemics, it is crucial to work for better sequencing equity around the globe.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias/prevención & control , Zoonosis/epidemiología , Zoonosis/prevención & control , Genómica
9.
Mikrochim Acta ; 190(3): 95, 2023 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-36808576

RESUMEN

In this paper, we report on the utilization of micro-technology based tools to fight viral infections. Inspired by various hemoperfusion and immune-affinity capture systems, a blood virus depletion device has been developed that offers highly efficient capture and removal of the targeted virus from the circulation, thus decreasing virus load. Single-domain antibodies against the Wuhan (VHH-72) virus strain produced by recombinant DNA technology were immobilized on the surface of glass micro-beads, which were then utilized as stationary phase. For feasibility testing, the virus suspension was flown through the prototype immune-affinity device that captured the viruses and the filtered media left the column. The feasibility test of the proposed technology was performed in a Biosafety Level 4 classified laboratory using the Wuhan SARS-CoV-2 strain. The laboratory scale device actually captured 120,000 virus particles from the culture media circulation proving the feasibility of the suggested technology. This performance has an estimated capture ability of 15 million virus particles by using the therapeutic size column design, representing three times over-engineering with the assumption of 5 million genomic virus copies in an average viremic patient. Our results suggested that this new therapeutic virus capture device could significantly lower virus load thus preventing the development of more severe COVID-19 cases and consequently reducing mortality rate.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Estudios de Factibilidad , Pandemias , Microesferas
10.
BMC Vet Res ; 18(1): 450, 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36564834

RESUMEN

BACKGROUND: Canine morbillivirus (canine distemper virus, CDV) is a member of the Paramyxoviridae family. Canine distemper is a serious viral disease that affects many mammalian species, including members of the Mustelidae family. These animals have an elusive nature, which makes related virological studies extremely challenging. There is a significant knowledge gap about the evolution of their viruses and about the possible effects of these viruses to the population dynamics of the host animals. Spleen and lung tissue samples of 170 road-killed mustelids belonging to six species were collected between 1997 and 2022 throughout Hungary and tested for CDV with real-time RT-PCR. RESULTS: Three species were positive for viral RNA, 2 out of 64 Steppe polecats (Mustela eversmanii), 1 out of 36 European polecats (Mustela putorius) and 2 out of 36 stone martens (Martes foina); all 18 pine martens (Martes martes), 10 least weasels (Mustela nivalis) and 6 stoats (Mustela erminea) tested negative. The complete CDV genome was sequenced in five samples using pan-genotype CDV-specific, amplicon-based Nanopore sequencing. Based on the phylogenetic analysis, all five viral sequences were grouped to the Europe/South America 1 lineage and the distribution of one sequence among trees indicated recombination of the Hemagglutinin gene. We verified the recombination with SimPlot analysis. CONCLUSIONS: This paper provides the first CDV genome sequences from Steppe polecats and additional complete genomes from European polecats and stone martens. The infected specimens of various species originated from distinct parts of the country over a long time, indicating a wide circulation of CDV among mustelids throughout Hungary. Considering the high virulence of CDV and the presence of the virus in these animals, we highlight the importance of conservation efforts for wild mustelids. In addition, we emphasize the importance of full genomic data acquisition and analysis to better understand the evolution of the virus. Since CDV is prone to recombination, specific genomic segment analyses may provide less representative evolutionary traits than using complete genome sequences.


Asunto(s)
Virus del Moquillo Canino , Moquillo , Enfermedades de los Perros , Mustelidae , Animales , Perros , Virus del Moquillo Canino/genética , Animales Salvajes , Hurones , Filogenia , Análisis de Secuencia/veterinaria
11.
Microorganisms ; 10(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36363786

RESUMEN

Monkeypox is an emerging zoonotic disease with a growing prevalence outside of its endemic area, posing a significant threat to public health. Despite the epidemiological and field investigations of monkeypox, little is known about its maintenance in natural reservoirs, biological implications or disease management. African rodents are considered possible reservoirs, although many mammalian species have been naturally infected with the monkeypox virus (MPXV). The involvement of domestic livestock and pets in spillover events cannot be ruled out, which may facilitate secondary virus transmission to humans. Investigation of MPXV infection in putative reservoir species and non-human primates experimentally uncovered novel findings relevant to the course of pathogenesis, virulence factors and transmission of MPXV that provided valuable information for designing appropriate prevention measures and effective vaccines.

12.
Sci Rep ; 12(1): 16001, 2022 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-36163239

RESUMEN

Patients infected with SARS-CoV-2 risk co-infection with Gram-positive bacteria, which severely affects their prognosis. Antimicrobial drugs with dual antiviral and antibacterial activity would be very useful in this setting. Although glycopeptide antibiotics are well-known as strong antibacterial drugs, some of them are also active against RNA viruses like SARS-CoV-2. It has been shown that the antiviral and antibacterial efficacy can be enhanced by synthetic modifications. We here report the synthesis and biological evaluation of seven derivatives of teicoplanin bearing hydrophobic or superbasic side chain. All but one teicoplanin derivatives were effective in inhibiting SARS-CoV-2 replication in VeroE6 cells. One lipophilic and three perfluoroalkyl conjugates showed activity against SARS-CoV-2 in human Calu-3 cells and against HCoV-229E, an endemic human coronavirus, in HEL cells. Pseudovirus entry and enzyme inhibition assays established that the teicoplanin derivatives efficiently prevent the cathepsin-mediated endosomal entry of SARS-CoV-2, with some compounds inhibiting also the TMPRSS2-mediated surface entry route. The teicoplanin derivatives showed good to excellent activity against Gram-positive bacteria resistant to all approved glycopeptide antibiotics, due to their ability to dually bind to the bacterial membrane and cell-wall. To conclude, we identified three perfluoralkyl and one monoguanidine analog of teicoplanin as dual inhibitors of Gram-positive bacteria and SARS-CoV-2.


Asunto(s)
COVID-19 , Fluorocarburos , Antibacterianos/química , Antivirales/química , Catepsinas/farmacología , Fluorocarburos/farmacología , Glicopéptidos/química , Bacterias Grampositivas , Humanos , SARS-CoV-2 , Teicoplanina/farmacología
14.
Virus Evol ; 8(2): veac069, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35996591

RESUMEN

Retrospective evaluation of past waves of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic is key for designing optimal interventions against future waves and novel pandemics. Here, we report on analysing genome sequences of SARS-CoV-2 from the first two waves of the epidemic in 2020 in Hungary, mirroring a suppression and a mitigation strategy, respectively. Our analysis reveals that the two waves markedly differed in viral diversity and transmission patterns. Specifically, unlike in several European areas or in the USA, we have found no evidence for early introduction and cryptic transmission of the virus in the first wave of the pandemic in Hungary. Despite the introduction of multiple viral lineages, extensive community spread was prevented by a timely national lockdown in March 2020. In sharp contrast, the majority of the cases in the much larger second wave can be linked to a single transmission lineage of the pan-European B.1.160 variant. This lineage was introduced unexpectedly early, followed by a 2-month-long cryptic transmission before a soar of detected cases in September 2020. Epidemic analysis has revealed that the dominance of this lineage in the second wave was not associated with an intrinsic transmission advantage. This finding is further supported by the rapid replacement of B.1.160 by the alpha variant (B.1.1.7) that launched the third wave of the epidemic in February 2021. Overall, these results illustrate how the founder effect in combination with the cryptic transmission, instead of repeated international introductions or higher transmissibility, can govern viral diversity.

15.
Front Pharmacol ; 13: 861295, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846988

RESUMEN

Background and purpose: The COVID-19 pandemic continues to pose challenges, especially with the emergence of new SARS-CoV-2 variants that are associated with higher infectivity and/or compromised protection afforded by the current vaccines. There is a high demand for additional preventive and therapeutic strategies effective against this changing virus. Repurposing of approved or clinically tested drugs can provide an immediate solution. Experimental Approach: We applied a novel computational approach to search among approved and commercially available drugs. Antiviral activity of a predicted drug, azelastine, was tested in vitro in SARS-CoV-2 infection assays with Vero E6 cells, Vero cells stably overexpressing the human TMPRSS2 and ACE2 proteins as well as on reconstituted human nasal tissue using the predominant variant circulating in Europe in summer 2020, B.1.177 (D614G variant), and its emerging variants of concern; B.1.1.7 (alpha), B.1.351 (beta) and B.1.617.2 (delta) variants. The effect of azelastine on viral replication was assessed by quantification of viral genomes by droplet digital PCR or qPCR. Key results: The computational approach identified major drug families, such as anti-infective, anti-inflammatory, anti-hypertensive, antihistamine, and neuroactive drugs. Based on its attractive safety profile and availability in nasal formulation, azelastine, a histamine 1 receptor-blocker was selected for experimental testing. Azelastine reduced the virus-induced cytopathic effect and SARS-CoV-2 copy numbers both in preventive and treatment settings upon infection of Vero cells with an EC50 of 2.2-6.5 µM. Comparable potency was observed with the alpha, beta and delta variants. Furthermore, five-fold dilution (containing 0.02% azelastine) of the commercially available nasal spray formulation was highly potent in inhibiting viral propagation in reconstituted human nasal tissue. Conclusion and Implications: Azelastine, an antihistamine available as nasal sprays developed against allergic rhinitis may be considered as a topical prevention or treatment of nasal colonization by SARS-CoV-2. A Phase 2 efficacy indicator study with azelastine-containing nasal spray that was designed based on the findings reported here has been concluded recently, confirming accelerated viral clearance in SARS-CoV-2 positive subjects.

16.
Data Brief ; 43: 108386, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35789906

RESUMEN

Long-read sequencing (LRS) approaches shed new light on the complexity of viral (Kakuk et al., 2021 [1]; Boldogkoi et al., 2019 [2]; Depledge et a., 2019 [3]), bacterial (Yan et al., 2018 [4]) and eukaryotic (Tilgner et al., 2014 [5]) transcriptomes. Emerging RNA viruses are zoonotic (Woolhouse et al., 2016 [6]) and create public health problems, e.g. influenza pandemic caused by H1N1 virus in (Fraser et al., 2009 [7]), as well as the current SARS-CoV-2 pandemic (Kim et al., 2020 [8]). In this study, we carried out nanopore sequencing for generating transcriptomic data valuable for structural and kinetic profiling of six important human pathogen RNA viruses, the H1N1 subtype of Influenza A virus (IVA), the Zika virus (ZIKV), the West Nile virus (WNV), the Crimean-Congo hemorrhagic fever virus (CCHFV), the Coxsackievirus [group B serotype 5 (CVB5)] and the Vesicular stomatitis Indiana virus (VSIV), and the response of host cells upon viral infection. The raw sequencing data were filtered during basecalling and only high quality reads (Qscore ≥ 7) were mapped to the appropriate viral and host genomes. Length distribution of sequencing reads were assessed and statistics of data were plotted by the ReadStat.4 python script. The datasets can be used to profile the transcriptomic landscape of RNA viruses, provide information for novel gene annotations, can serve as resource for studying the virus-host interactions, and for the analysis of RNA base modifications. These datasets can be used to compare the different sequencing techniques, library preparation approaches, bioinformatics pipelines, and to analyze the RNA profiles of viruses with small RNA genomes.

17.
Colloids Surf B Biointerfaces ; 218: 112716, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35907357

RESUMEN

Microfluidic resistive pulse sensing (MRPS) was used to determine the size -distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) based on detecting nearly 30,000 single virions. However, the ultrastructure of SARS-CoV-2 is thoroughly described, but ensemble properties of SARS-CoV-2, e.g., its particle size distribution, are sparsely reported. According to the MRPS results, the size distribution of SARS-CoV-2 follows a log-normal function with a mean value of 85.1 nm, which corresponds to an approximate diameter of the viral envelope. This result also confirms the low number (< 50) of spike proteins on the surface of the virions.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Microfluídica , Glicoproteína de la Espiga del Coronavirus/metabolismo , Virión
18.
Viruses ; 14(7)2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35891411

RESUMEN

The Eurasian otter (Lutra lutra) is a piscivorous apex predator in aquatic habitats, and a flagship species of conservation biology throughout Europe. Despite the wide distribution and ecological relevance of the species, there is a considerable lack of knowledge regarding its virological and veterinary health context, especially in Central Europe. Canine morbillivirus (Canine distemper virus (CDV)) is a highly contagious viral agent of the family Paramyxoviridae with high epizootic potential and veterinary health impact. CDV is present worldwide among a wide range of animals; wild carnivores are at particular risk. As part of a retrospective study, lung-tissue samples (n = 339) from Eurasian otters were collected between 2000 and 2021 throughout Hungary. The samples were screened for CDV using a real-time RT-PCR method. Two specimens proved positive for CDV RNA. In one sample, the complete viral genome was sequenced using a novel, pan-genotype CDV-specific amplicon-based sequencing method with Oxford Nanopore sequencing technology. Both viral sequences were grouped to a European lineage based on the hemagglutinin-gene phylogenetic classification. In this article, we present the feasibility of road-killed animal samples for understanding the long-term dynamics of CDV among wildlife and provide novel virological sequence data to better understand CDV circulation and evolution.


Asunto(s)
Virus del Moquillo Canino , Moquillo , Nanoporos , Nutrias , Animales , Virus del Moquillo Canino/genética , Perros , Genómica , Nutrias/genética , Filogenia , Estudios Retrospectivos , Tecnología
20.
Int J Mol Sci ; 23(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35682873

RESUMEN

SARS-CoV-2 infections are responsible for the COVID-19 pandemic. Transferrin has been found to explain the link between diseases associated with impaired iron transport and COVID-19 infection. The effect of SARS-CoV-2 on human whole blood was studied by differential scanning calorimetry. The analysis of the thermal transition curves showed that the melting temperature of the transferrin-related peak decreased in the presence of SARS-CoV-2. The ratio of the under-curve area of the two main peaks was greatly affected, while the total enthalpy of the heat denaturation remained nearly unchanged in the presence of the virus. These results indicate that SARS-CoV-2, through binding to transferrin, may influence its Fe3+ uptake by inducing thermodynamic changes. Therefore, transferrin may remain in an iron-free apo-conformational state, which depends on the SARS-CoV-2 concentration. SARS-CoV-2 can induce disturbance in erythropoiesis due to toxicity generated by free iron overload.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/complicaciones , Humanos , Hierro/metabolismo , Pandemias , Transferrina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...